Не забываем и про спинной мозг. Методические рекомендации для практических занятий Тема: «Гистология спинного мозга, ганглия, нерва.» - Методические рекомендации Гистология нервная система спинной мозг

Окрашенное на препарате в желтый или темно-серый цвет и расположенное в форме буквы Н или летящей бабочки. При малом увеличении в сером веществе обнаруживают тела нейронов, безмиелиновые нервные волокна и глию. В связи с тем что все эти элементы не имеют миелиновых оболочек, данная часть спинного мозга серого цвета. В составе серого вещества различают дорсальные, вентральные и латеральные рога (столбы) и серую спайку. Дорсальные рога более острые и доходят почти до поверхности мозга. В них залегают тела ассоциативных нейронов, сюда заходят аксоны чувствительных нейронов, что за­метно по расположению мелких дорсальных боковых борозд. Вентральные рога более широкие, до поверхности мозга не доходят. Здесь располагаются тела двигательных нейронов, сюда заходят аксоны ассоциативных нейронов и отсюда выходят аксоны двигательных нейронов, формирующие за пределами спинного мозга вентральный (двигательный) корешок спинномозгового нерва. Латеральные рога на препарате могут отсутствовать, так как имеются только в грудном и поясничном отделах. Правая и левая части серого вещества соединены друг с другом серой спайкой, в центре которой нахо­дится центральный канал, за­полненный спинномозговой (цереброспинальной) жидкостью.

Периферия спинного мозга занята белым веществом, состоящим из глии и нервных, главным образом миелиновых, волокон. Оно с вентральной стороны разделено на правую и левую половины вентральной продольной щелью , которая немного не доходит до серого вещества, с дорсальной стороны - срединной дорсальной бо­роздой, переходящей в дорсальную перегородку. Белое вещество рогами (столбами) серого вещества, вентральной щелью и дорсальной бороздой делится на три пары мозговых канатиков (столбов): дорсальный- между дорсальной перегородкой и дорсальными рогами, латеральные-между дорсальным и вентральным рогами с каждой стороны и вентральные- между вентраль­ной щелью и вентральными рогами серого вещества. Правый и левый вентральные канатики соединены друг с другом вентральной белой спайкой.

Нервные волокна, проходящие в канатиках белого вещества, образуют проводящие пути. Поверхностно расположенные пучки нервных волокон формируют афферентные (чувствительные) и эфферентные (двигательные) проекционные проводящие пути, соединяющие спинной мозг с головным. При этом чувствительные пути идут в дорсальных канатиках и в поверхностных слоях лате­ральных канатиков, двигательные - в вентральных канатиках и в средних участках латеральных канатиков. Глубоколежащие пучки формируют собственные проводящие пути, соединяющие отдельные сегменты спинного мозга.

КОРА ГОЛОВНОГО МОЗГА. В наиболее развитых отделах коры полушарий боль­шого мозга различают шесть слоев: 1) молекуляр­ный - самый наружный; он состоит преимущественно из во­локон нейронов, лежащих ниже; 2) наружный зернистый; в нем находятся вставочные (ассоциативные и комиссуральные) ней­роны округлой, пирамидной или звездчатой форм; 3) пирамидный - самый широкий; составляющие его средние пирамиды также являются вставочными нейронами; 4) внутренний зернис­тый; по структуре и функции аналогичен наружному зернис­тому слою; 5) ганглионарный, или слой больших пирамид; содер­жит самые крупные клетки пирамидной формы, нейриты кото­рых формируют пирамидные тракты - путь от двигательного анализатора коры к моторным нейронам спинного мозга; 6) слой полиморфных клеток; образован клетками различной формы, чаще веретеновидными , нейриты их уходят в белое ве­щество больших полушарий в составе эфферентных путей го­ловного мозга. Второй, третий и четвертый слои у животных могут отсутствовать.

Белое вещество плаща состоит из миелиновых волокон и нейроглии. Пучки волокон, идущие от клеток коры, образуют ассоциативные, комиссуральные и проекционные проводящие пути. Ассоциативные пути объединяют участки коры в преде­лах одного полушария, комиссуральные - объединяют участки коры двух полушарий, эти пути формируют мозолистое тело. Проекционные пути объединяют кору с остальными участками головного мозга и со спинным мозгом. Они бывают эфферент­ными, идущими от клеток коры на периферию, и афферент­ными - идущими с периферии через зрительные бугры к коре плаща.

Кора мозжечка. Мозжечок является центром равновесия и координации движений. Он входит в состав заднего мозга. На препарате невоору­женным глазом можно различить серое и белое вещество. Серое вещество имеет желтовато-коричневый цвет и располагается в по­верхностных слоях мозжечка - коре, образуя извилины. Более светлое белое вещество находится в глубине мозжечка, разветвля­ется в виде «древа жизни».

Под малым увеличением микроскопа в коре мозжечка различа­ют три слоя: наружный - молекулярный, средний - ганглионарный (слой грушевидных клеток) и внутренний - зернистый.

В молекулярном слое находятся два вида нервных клеток: корзинчатые мелкие клетки с аксонами, разветвляющимися наподо­бие корзинок, и звездчатые - разной величины и с разным коли­чеством дендритов.

Клетки молекулярного слоя являются по своим функциям ас­социативными (вставочными), передающими возбуждение на дендриты клеток ганглионарного слоя. Основную массу молеку­лярного слоя составляют отростки нейронов молекулярного и ганглионарного слоев, по которым передается возбуждение.

В ганглионарном слое в один ряд располагаются крупные гру­шевидные клетки (Пуркинье). Они имеют два дендрита, разветв­ляющиеся в молекулярном слое в одной плоскости и имеющие синаптическую связь с большим количеством нейронов. Гибель этих клеток ведет к расстройству координации движений. В ниж­ней части молекулярного слоя у нижних ветвлений дендритов клеток Пуркинье лежат мелкие корзинчатые клетки. Их относи­тельно длинные ветвящиеся дендриты и длинные нейриты идут параллельно поверхности извилин над телами грушевидных кле­ток. Отходящие от нейритов коллатерали опускаются к грушевид­ным клеткам и образуют на них «корзинки». Нейриты грушевид­ных клеток выходят за пределы коры мозжечка в белое вещество, формируя его эффекторные пути.

Внутрь от слоя грушевидных нейронов в направлении белого вещества расположен зернистый слой. Он богат мелкими клетка­ми - зерновидными нейронами. Они имеют слаборазвитую ци­топлазму, и поэтому на препарате видны только их ядра. Длин­ный аксон клеток - зерен проходит в молекулярный слой и в нем Т-образно делится на две ветви, идущие параллельно поверх­ности вдоль извилин.

Нервная система выполняет функцию интеграции, обеспечи­вая связь всех органов и систем органов в организме в единое це­лое. Под контролем нервной системы находятся также взаимо­действие организма с окружающей средой и обменные процессы в иннервируемых тканях.

Основным морфологическим субстратом органов этой систе­мы является нервная ткань.

С анатомической точки зрения в нервной системе выделяют пе­риферический и центральный отделы. К пери­ферическому отделу относят нервные ганглии, или узлы, нервные стволы и окончания , а к центральному - головной и спинной мозг.

С физиологических позиций нервную систему делят на сома­тическую и вегетативную.

Вегетативная нервная система регулирует де­ятельность внутренних органов, сосудов, желез, а сомати­ческая иннервирует органы произвольного движения и стенки туловища.

Цепь нейронов, проводящих нервный импульс от рецептора чувствительного нейрона до эффекторного окончания двигатель­ного нейрона в рабочем органе, называется рефлекторной дугой.

Вегетативная нервная система, в свою очередь, подразделяется на симпатическую и парасимпатическую. Для рефлекторных дуг вегетативной нервной системы характерны два нейрона, один из которых находится в центральном звене, а дру­гой - в ганглии.

Нервные стволы, или нервы, состоят из пучков миелиновых или безмиелиновых волокон.

Снаружи нерв покрыт более плотной соединительно-тканной оболочкой (эпиневрий). Внутри тонкая соединительно-тканная оболочка покрывает каждое нервное волокно (эндоневрий). Волок­на формируют пучки, которые окружены периневрием.

Нервный узел (ганглий) - это скопление нервных кле­ток вне центральной нервной системы. Нервные узлы могут быть чувствительными (спинномозговые) и вегетативными. Они по­крыты соединительно-тканной капсулой, внутрь от которой отхо­дят прослойки.

В спинномозговых узлах нейроны псевдоуниполярные, в вегетативных - мультиполярные. Кроме нейрон нов в нервных узлах находятся нервные волокна, соединительной тканные прослойки и глиоциты, окружающие нейроны, называемые сателлитами, или мантийными клетками.

Симпатические ганглии находятся за пределами органа, a пaрасимпатические - в стенках органа (интрамурально). Нейроны спинномозговых узлов чувствительные, вегетативных эффекторные.

Рефлекторная дуга . В нервной системе возбуждение распрост­раняется по определенным путям, которые называются рефлек­торными дугами. Рефлекторная дуга - это цепь нейро­нов, обеспечивающая проведение нервного импульса от рецептора чувствительного нейрона до двигательного окончания в ра­бочем органе. В состав рефлек­торной дуги входят чувстви­тельные (эфферентные), вста­вочные (ассоциативные) и дви­гательные (афферентные) нейроны. Тело чувствительного нейрона расположено в спин­номозговом ганглии. Он име­ет длинный дендрит, который направляется на периферию и формирует там чувствительное нервное окончание - рецептор. Аксон чувствительного ней­рона в составе дорсального корешка спинномозгового не­рва идет к спинному мозгу и оканчивается на дендрите вставочного (ассоциативного) нейро­на, находящегося в дорсальном роге серого вещества спинного мозга. Нейрит вставочного нейрона передает возбуждение на дендрит двигательного (моторного, эффекторного) нейрона, тело которого находится в вентральном роге серого вещества спинного мозга. Аксон двигательного нейрона выходит из спинного мозга в составе вентрального корешка спинномозго­вого нерва и оканчивается в каком-либо органе двигательным нерв­ным окончанием.

Нервное возбуждение по рефлекторной дуге передается лишь в одном направлении. Первым звеном этой цепи всегда служит ре-цепторный орган, а последним - эффекторный.

Раздражение рецептора приводит к волне возбуждения, кото­рая проходит путь по рефлекторной дуге и, дойдя до эффектора, организует ответное действие, называемое рефлексом.

Сердечно-сосудистая система - одна из интегрирующих сис­тем, играющая важную роль в поддержании гомеостаза организма. Она способствует реализации функций нервной и эндокрин­ной систем, а также органов иммунной защиты. Сердечно-сосудистая система представляет собой замкнутую систему полых тру­бок. Структура сосудов сильно варьирует и соответствует их положению в круге кровообращения и особенностям функций.

Кровеносные сосуды. Делят на артерии различных типов , артериолы, капилляры, венулы, вены, артериоловенулярные анасто­мозы. Гемокапилляры обычно соединяют артериолу с венулой. Но капилляры в некоторых органах соединяют артериолы с артриолами (в клубочках почек) или две венулы (в печени, гипофи­зе). Такие соединения называют чудесными сетями. К лимфати­ческим сосудам относят лимфокапилляры и лимфатические cocyды (внутриорганные и внеорганные).

Строение стенки сосудов разных типов зависит от скорости движения крови, удаленности от сердца и давления крови. Самые крупные сосуды выполняют в основном только транспортную функцию.

Артерии мышечного типа помимо функции проведения крови регулируют приток крови к органам или тканям. Капилляры обес­печивают обмен веществ между кровью в просвете сосуда и тканями.

Несмотря на морфологические и функциональные различия, стенки артерий и вен имеют общее строение.

Внутренняя оболочка включает в себя эндотелий, субэндотелиальный слой, а на границе со средней оболочкой располагается густая сеть эласти­ческих волокон. В артериях мышечного типа она хорошо выражена и называется внут­ренней эластической мембра­ной.

Средняя оболочка включает гладкие мышечные клетки и эластические волок­на. В артериях эластического типа имеются многочислен­ные эластические окончатые мембраны, через которые осу­ществляется транспорт пита­тельных веществ для клеток стенки. В артериях мышечно­го типа средняя оболочка состоит преимущественно из гладкой мышечной ткани, между пучками которой расположена сеть элас­тических волокон, которые переплетаются с эластическими во­локнами соседних оболочек и формируют единый каркас.

В крупных артериях мышечного типа на границе с наружной оболочкой имеется наружная эластическая мембрана, состоящая из плотного сплетения продольно ориентированных эластических волокон.

Наружная оболочка состоит из соединительной тка­ни, в которой эластические и коллагеновые волокна вытянуты в основном в продольном направлении.

В средней и наружной оболочках крупных артерий и вен, а также наружной оболочке артерий среднего калибра и внутренней оболочке вен располагаются мелкие сосуды, питающие сосудис­тую стенку.

Морфологические признаки, отличающие вену мышечного типа от артерии мышечного типа, следующие: 1) в венах не разви­ты внутренние и наружные эластические мембраны; 2) вены снаб­жены клапанами; 3) в венах мышечные элементы в средней обо­лочке развиты слабее, чем в артериях; 4) в стенках вен присутствуют лимфатические капилляры в отличие от артерий; 5) в стенках вены самая толстая оболочка - наружная, а в стенках артерий - средняя.

Стенки гемокапилляров состоят из эндотелиоцитов, выстилающих сосуд изнутри, и базального слоя. В базальном слое находятся перициты и базальная пластинка , в которой различают три пластинки: прозрачную, плотную и сетчатую. Капилляры, артериолы и венулы сопровождают адвентициальные клетки. У капилляров соматического типа эндотелий состоит из плотного слоя эндотелиоцитов с непрерывной базальной пластинкой (капилляры мышц и кожи).

Капилляры висцерального типа фенестрированны, плазмолемма эндотелиоцитов имеет отверстия (фенестры), а базальная мембрана непрерывная (капилляры почек, кишечника и др.).

Синусоидные капилляры большого диаметра (20....30 мкм), между эндотелиоцитами имеются щели, а базальный слой прерывистый или отсутствует (капилляры печени, костного мозга и др.).

Артериолы, капилляры и венулы относят к сосудам микроциркуляторного русла. Через артериовенозные анастомозы кровь из артериол, минуя капилляры, может поступать в венулы.

Лимфатические сосуды подразделяют на лимфатические ка­пилляры, лимфатические сосуды (внутриорганные и внеорганные) и главные лимфатические стволы: грудной проток и правый лимфатический проток. Лимфатические капилляры начинаются. В тканях слепо. В них стенки образованы только эндотелиоцитами, базальная мембрана отсутствует. Крупные лимфатические сосуды по строению сходны с венами мышечного типа.

Сердце. Состоит из трех оболочек: эндокарда, миокарда и эпикарда. Эндокард по происхождению и строению сходен со стенкой сосуда и развивается из мезенхимы. В нем различают сле­дующие слои: эндотелий, субэндотелиальный, мышечно-эластический, наружный соединительно-тканный.

Миокард представляет собой поперечно-полосатую сер­дечную мышечную ткань, состоящую из клеток - кардиомиоцитов в отличие от скелетной мышечной ткани. Кардиомиоциты, соединяясь своими концами, формируют волокна миокарда. Гра­ницы сердечных миоцитов образуют вставочные диски, в которых наблюдаются плотные и щелевые контакты. Первые служат для прочного сцепления, вторые - для передачи возбуждения. Осо­бенностью сердечных мышечных волокон является наличие анас­томозов в кардиомиоцитах. Миофибриллы в кардиомиоцитах рас­полагаются упорядоченно по периферии, а ядро - в центре.

В околоядерной зоне находятся органеллы. Митохондрии це­почками лежат между миофибриллами. Эндоплазматическая сеть не образует терминальных цистерн, имеются только терминаль­ные расширения канальцев, прилегающие к Т-трубочкам. В сар­колемме отсутствуют сателлиты.

Проводящие кардиомиоциты формируют проводящую систе­му, состоящую из синусно-предсердного узла, предсердно-желудочкового узла и предсердно-желудочкового ствола, от которого отходят правая и левая ножки , их ветви и проводящие волокна Пуркинье. Миоциты синусно-предсердного узла мелкие, округ­лой формы. Они выполняют функцию водителей ритма, способ­ны генерировать нервные импульсы, задавая ритм сердечных со­кращений. Миоциты остальных частей выполняют проводящую функцию. Миоциты волокон Пуркинье самые крупные: диаметр их больше диаметра рабочих кардиомиоцитов. Они передают воз­буждение на рабочие кардиомиоциты.

Все атипичные кардиомиоциты проводящей системы сердца от­личаются округлой формой, не имеют Т-трубочек, не образуют вста­вочных дисков и анастамозов, отличаются меньшим количеством неупорядоченно расположенных миофибрилл и митохондрий и большим содержанием включений гликогена, не имеют поперечной исчерченности. Миокард и эпикард развиваются из миоэпикардальной пластинки висцерального листка спланхнотома.

Эндокринная система включает высокоспециализированные секреторные органы (нейросекреторные ядра гипоталамуса, желе­зы внутренней секреции), эндокринную часть поджелудочной же­лезы, яичника, семенника, почки, плаценты и эндокринные клет­ки неэндокринных органов - органов пищеварения, дыхания, выделения. Комплекс этих клеток называют диффузной эндокринной системой.

Для всех компонентов эндокринной системы характерна спо­собность синтезировать и выделять в кровь и лимфу гормоны - биологически активные вещества, которые совместно с нервной системой регулируют уровень обмена и функциональную актив­ность клеток и органов, обеспечивая их взаимодействие.

Для желез внутренней секреции характерны следующие при­знаки:

наличие специализированных секреторных клеток с развитым синтетическим и секреторным аппаратами;

обилие кровеносных и лимфатических сосудов;

отсутствие выводного протока и поступление гормонов непос­редственно в кровь.

В эндокринной системе выделяют два взаимосвязанных звена: центральное и периферическое. Центральное звено - это нейросекреторные ядра гипоталамуса, гипофиз и эпифиз. В периферическое звено входят железы , функции которых зависят от передней доли гипофиза: щитовидная железа, кора надпочечников, семенники, яичники, и железы, функции которых не зависят от передней доли гипофиза: мозговое вещество надпочечников, околощитовидная железа, околофулликулярные клетки (кальцитониноциты) щитовидной железы и гормоносинтезирующие клетки неэндокринных органов.

Спинной мозг состоит из двух симметричных половин, отграниченных друг от друга спереди - глубокой срединной щелью, а сзади - срединной бороздой. Спинной мозг характеризуется сегментарным строением; с каждым сегментом связана пара передних (вентральных) и пара задних (дорсальных) корешков.

В спинном мозге различают серое вещество, расположенное в центральной части, и белое вещество, лежащее по периферии.

Белое вещество спинного мозга представляет собой совокупность продольно ориентированных преимущественно миелиновых нервных волокон. Пучки нервных волокон, осуществляющие связь между различными отделами нервной системы, называются трактами, или проводящими путями, спинного мозга.

Внешнюю границу белого вещества спинного мозга образует пограничная глиальная мембрана, состоящая из слившихся уплощенных отростков астроцитов. Эту мембрану пронизывают нервные волокна, составляющие передние и задние корешки.

На протяжении всего спинного мозга в центре серого вещества проходит центральный канал спинного мозга, сообщающийся с желудочками головного мозга.

Серое вещество на поперечном разрезе имеет вид бабочки и включает передние, или вентральные, задние, или дорсальные, и боковые, или латеральные, рога. В сером веществе находятся тела, дендриты и (частично) аксоны нейронов, а также глиальные клетки. Основной составной частью серого вещества, отличающей его от белого, являются мультиполярные нейроны. Между телами нейронов находится нейропиль - сеть, образованная нервными волокнами и отростками глиальных клеток.

В процессе развития спинного мозга из нервной трубки нейроны группируются в 10 слоях, или пластинах Рекседа. При этом I-V пластины соответствуют задним рогам, VI-VII пластины - промежуточной зоне, VIII-IX пластины - передним рогам, X пластина - зона около центрального канала. Такое деление на пластины дополняет организацию структуры серого вещества спинного мозга, основывающейся на локализации ядер. На поперечных срезах более отчетливо видны ядерные группы нейронов, а на сагиттальных - лучше видно пластинчатое строение, где нейроны группируются в колонки Рекседа. Каждая колонка нейронов соответствует определенной области на периферии тела.

Клетки, сходные по размерам, тонкому строению и функциональному значению, лежат в сером веществе группами, которые называются ядрами.

Среди нейронов спинного мозга можно выделить три вида клеток:
корешковые,
внутренние,
пучковые.

Аксоны корешковых клеток покидают спинной мозг в составе его передних корешков. Отростки внутренних клеток заканчиваются синапсами в пределах серого вещества спинного мозга. Аксоны пучковых клеток проходят в белом веществе обособленными пучками волокон, несущими нервные импульсы от определенных ядер спинного мозга в его другие сегменты или в соответствующие отделы головного мозга, образуя проводящие пути. Отдельные участки серого вещества спинного мозга значительно отличаются друг от друга по составу нейронов, нервных волокон и нейроглии.

В задних рогах различают губчатый слой, желатинозное вещество, собственное ядро заднего рога и грудное ядро Кларка. Между задними и боковыми рогами серое вещество вдается тяжами в белое, вследствие чего образуется его сетеобразное разрыхление, получившее название сетчатого образования, или ретикулярной формации, спинного мозга.

Задние рога богаты диффузно расположенными вставочными клетками. Это мелкие мультиполярные ассоциативные и комиссуральные клетки, аксоны которых заканчиваются в пределах серого вещества спинного мозга той же стороны (ассоциативные клетки) или противоположной стороны (комиссуральные клетки).

Нейроны губчатой зоны и желатинозного вещества осуществляют связь между чувствительными клетками спинальных ганглиев и двигательными клетками передних рогов, замыкая местные рефлекторные дуги.

Нейроны ядра Кларка получают информацию от рецепторов мышц, сухожилий и суставов (проприоцептивная чувствительность) по самым толстым корешковым волокнам и передают ее в мозжечок.

В промежуточной зоне расположены центры вегетативной (автономной) нервной системы - преганглионарные холинергические нейроны ее симпатического и парасимпатического отделов.

В передних рогах расположены самые крупные нейроны спинного мозга, которые образуют значительные по объему ядра. Это так же, как и нейроны ядер боковых рогов, корешковые клетки, поскольку их нейриты составляют основную массу волокон передних корешков. В составе смешанных спинномозговых нервов они поступают на периферию и образуют моторные окончания в скелетной мускулатуре. Таким образом, ядра передних рогов представляют собой моторные соматические центры.
Глия спинного мозга

Основную часть глиального остова серого вещества составляют протоплазматические и волокнистые астроциты. Отростки волокнистых астроцитов выходят за пределы серого вещества и вместе с элементами соединительной ткани принимают участие в образовании перегородок в белом веществе и глиальных мембран вокруг кровеносных сосудов и на поверхности спинного мозга.

Олигодендроглиоциты входят в состав оболочек нервных волокон, преобладают в белом веществе.

Эпендимная глия выстилает центральный канал спинного мозга. Эпендимоциты участвуют в выработке спинномозговой жидкости (ликвора). От периферического конца эпендимоцита отходит длинный отросток, входящий в состав наружной пограничной мембраны спинного мозга.

Непосредственно под слоем эпендимы располагается субэпендимальная (перивентрикулярная) пограничная глиальная мембрана, образованная отростками астроцитов. Эта мембрана входит в состав т.н. гемато-ликворного барьера.

Микроглия поступает в спинной мозг по мере врастания в него кровеносных сосудов и распределяется в сером и белом веществе.

Соединительнотканные оболочки спинного мозга соответствуют оболочкам головного мозга.
Головной мозг

В головном мозге различают серое и белое вещество, но их распределение здесь значительно сложнее, чем в спинном мозге. Большая часть серого вещества головного мозга располагается на поверхности большого мозга и мозжечка, образуя их кору. Меньшая часть образует многочисленные подкорковые ядра, окруженные белым веществом. Все ядра серого вещества состоят из мультиполярных нейронов.
Мозжечок

Мозжечок представляет собой центральный орган равновесия и координации движений. Он образован двумя полушариями с большим числом бороздок и извилин, и узкой средней частью - червем.

Основная масса серого вещества в мозжечке располагается на поверхности и образует его кору. Меньшая часть серого вещества лежит глубоко в белом веществе в виде центральных ядер мозжечка.

Кора мозжечка является нервным центром экранного типа и характеризуется высокой упорядоченностью расположения нейронов, нервных волокон и глиальных клеток. В коре мозжечка различают три слоя: молекулярный, ганглионарный и зернистый.

Наружный молекулярный слой содержит сравнительно мало клеток. В нем различают корзинчатые и звездчатые нейроны.

Средний ганглионарный слой образован одним рядом крупных грушевидных клеток, впервые описанных чешским ученым Яном Пуркинье.

Внутренний зернистый слой характеризуется большим количеством плотно лежащих клеток, а также наличием т.н. клубочков мозжечка. Среди нейронов здесь выделяют клетки-зерна, клетки Гольджи, и веретеновидные горизонтальные нейроны.
Более детальное строение коры мозжечка

Молекулярный слой содержит два основных вида нейронов: корзинчатые и звездчатые. Корзинчатые нейроны находятся в нижней трети молекулярного слоя. Их дендриты образуют связи с параллельными волокнами в наружной части молекулярного слоя. Длинные аксоны корзинчатых клеток идут поперек извилины и отдают коллатерали к телам грушевидных нейронов, густо оплетая их наподобие корзинки. Активность корзинчатых нейронов вызывает торможение грушевидных нейронов Пуркинье.

Звездчатые нейроны лежат выше корзинчатых и бывают двух типов. Мелкие звездчатые нейроны снабжены короткими дендритами и слаборазветвленными аксонами, образующими синапсы на дендритах грушевидных клеток. Крупные звездчатые нейроны в отличие от мелких имеют длинные и сильно разветвленные дендриты и аксоны. Ветви их аксонов входят в состав так называемых корзинок. Корзинчатые и звездчатые нейроны молекулярного слоя представляют собой единую систему вставочных нейронов, передающую тормозные нервные импульсы на дендриты и тела грушевидных клеток в плоскости, поперечной извилинам.

Ганглионарный слой содержит лежащие в один ряд тела клеток Пуркинье, оплетенные коллатералями аксонов корзинчатых клеток. От крупного грушевидного тела этих нейронов в молекулярный слой отходят 2-3 дендрита, которые обильно ветвятся и пронизывают всю толщу молекулярного слоя. Все ветви дендритов располагаются только в одной плоскости, перпендикулярной к направлению извилин. На дендритах находятся шипики - контактные зоны возбуждающих синапсов, образуемых параллельными волокнами и тормозных синапсов, образуемых лазящими волокнами.

От основания тел клеток Пуркинье отходят аксоны, проходящие через зернистый слой коры мозжечка в белое вещество и заканчивающиеся на клетках ядер мозжечка. Это начальное звено эфферентных тормозных путей мозжечка. В пределах зернистого слоя от этих аксонов отходят коллатерали, которые возвращаются в ганглионарный слой и вступают в синаптическую связь с соседними грушевидными нейронами.

Зернистый слой коры мозжечка содержит близко расположенные тела зерновидных нейронов, или клеток-зерен. Клетка имеет 3-4 коротких дендрита, заканчивающихся в этом же слое концевыми ветвлениями в виде "птичьей лапки". Вступая в синаптическую связь с окончаниями приходящих в мозжечок возбуждающих моховидных волокон, дендриты клеток-зерен образуют характерные структуры, именуемые клубочками мозжечка.

Аксоны клеток-зерен поднимаются в молекулярный слой и в нем Т-образно делятся на две ветви, ориентированные параллельно поверхности коры вдоль извилин мозжечка. Преодолевая большие расстояния, эти параллельные волокна пересекают ветвления дендритов многих грушевидных клеток и образуют с ними и дендритами корзинчатых и звездчатых нейронов синапсы. Таким образом, аксоны клеток-зерен передают возбуждение, полученное ими от моховидных волокон, на значительное расстояние многим грушевидным клеткам.

Вторым типом клеток зернистого слоя мозжечка являются тормозные звездчатые нейроны, они же большие клетки-зерна, они же клетки Гольджи. Различают два вида таких клеток: с короткими и длинными аксонами. Нейроны с короткими аксонами лежат вблизи ганглионарного слоя. Их разветвленные дендриты распространяются в молекулярном слое и образуют синапсы с параллельными волокнами - аксонами клеток-зерен. Короткие аксоны направляются к клубочкам мозжечка и заканчиваются синапсами на концевых ветвлениях дендритов клеток-зерен проксимальнее синапсов моховидных волокон. Возбуждение звездчатых нейронов может блокировать импульсы, поступающие по моховидным волокнам.

Немногочисленные звездчатые нейроны с длинными аксонами имеют обильно ветвящиеся в зернистом слое дендриты и аксоны, выходящие в белое вещество. Предполагают, что эти клетки обеспечивают связь между различными областями коры мозжечка.

Третий тип клеток зернистого слоя составляют веретеновидные горизонтальные клетки. Они имеют небольшое вытянутое тело, от которого в обе стороны отходят длинные горизонтальные дендриты, заканчивающиеся в ганглионарном и зернистом слоях. Аксоны этих клеток дают коллатерали в зернистый слой и уходят в белое вещество.

Афферентные волокна, поступающие в кору мозжечка, представлены двумя видами - моховидными и лазящими волокнами. Моховидные волокна через клетки-зерна оказывают на грушевидные клетки возбуждающее действие. Они заканчиваются в клубочках зернистого слоя мозжечка в виде расширений-розеток, где вступают в контакт с дендритами клеток-зерен. Каждое моховидное волокно дает ветви ко многим клубочкам мозжечка, и каждый клубочек получает ветви от многих моховидных волокон. Аксоны клеток-зерен по параллельным волокнам молекулярного слоя передают импульс дендритам грушевидных, корзинчатых, звездчатых нейронов зернистого слоя.

Лазящие, или лиановидные, волокна пересекают зернистый слой, прилегают к грушевидным нейронам и стелются по их дендритам, заканчиваясь на их поверхности возбуждающими синапсами. Лазящие волокна передают возбуждение непосредственно грушевидным нейронам. С каждой клеткой Пуркинье обычно контактирует одно такое волокно.

Таким образом, возбуждающие импульсы, поступающие в кору мозжечка, достигают грушевидных нейронов или непосредственно по лазящим волокнам или по параллельным волокнам клеток-зерен.

Торможение в мозжечке - функция звездчатых нейронов молекулярного слоя, корзинчатых нейронов, а также клеток Гольджи зернистого слоя. Аксоны двух первых, следуя поперек извилин и тормозя активность грушевидных клеток, ограничивают их возбуждение узкими дискретными зонами коры. Поступление в кору мозжечка возбуждающих сигналов по моховидным волокнам, через клетки-зерна и параллельные волокна может быть прервано тормозными синапсами больших звездчатых нейронов, локализованными на концевых ветвлениях дендритов клеток-зерен проксимальнее возбуждающих синапсов.

Эфферентные волокна коры мозжечка представлены аксонами клеток Пуркинье, которые в виде миелиновых волокон направляются в белое вещество и достигают глубоких ядер мозжечка и вестибулярного ядра, на нейронах которых они образуют тормозные синапсы.

Кора мозжечка содержит различные глиальные элементы. В зернистом слое имеются волокнистые и протоплазматические астроциты. Ножки отростков волокнистых астроцитов образуют периваскулярные мембраны, являющиеся компонентом гемато-энцефалического барьера, а также оболочки вокруг клубочков мозжечка. Во всех слоях в мозжечке имеются олигодендроциты. Особенно богаты этими клетками зернистый слой и белое вещество мозжечка. В ганглионарном слое между грушевидными нейронами лежат особые астроциты с темными ядрами - клетки Бергмана. Отростки этих клеток направляются к поверхности коры и образуют глиальные волокна молекулярного слоя мозжечка (волокна Бергмана), поддерживающие ветвления дендритов грушевидных клеток. Микроглия в большом количестве содержится в молекулярном и ганглионарном слоях.

В спинном мозге различают серое и белое вещество. На поперечном срезе спинного мозга серое вещество имеет вид буквы Н. Выделяют передние (вентральные), боковые, или латеральные (нижние шейные, грудные, два поясничных), и задние (дорсальные) рога серого вещества спинного мозга.

Серое вещество представлено телами нейронов и их отростками, нервными окончаниями с синаптическим аппаратом, макро- и микроглией и сосудами.

Белое вещество окружает снаружи серое вещество и образовано пучками мякотных нервных волокон, которые формируют проводящие пути на протяжении всего спинного мозга. Эти пути направляются в сторону головного мозга или нисходят из него. Сюда же относятся волокна, направляющиеся в выше- или нижележащие сегменты спинного мозга. Кроме того, в белом веществе находятся астроциты, отдельные нейроны, гемокапилляры.

В белом веществе каждой половины спинного мозга (на поперечном срезе) различают три пары столбов (канатиков): задний (между задней срединной перегородкой и медиальной поверхностью заднего рога), боковой (между передним и задним рогами) и передний (между медиальной поверхностью переднего рога и передней срединной щелью).

В центре спинного мозга проходит канал, выстланный эпендимоцитами, среди которых различают малодифференцированные формы, способные, по данным некоторых авторов, к миграции и дифференцировке в нейроны. В нижних сегментах спинного мозга (поясничном и сакральном) после полового созревания происходит пролиферация глиоцитов и зарастание канала, образование интраспиналъного органа. В составе последнего находятся глиоциты и секреторные клетки, вырабатывающие вазоактивный нейропептид. Орган подвергается инволюции после 36 лет.

Нейроны серого вещества спинного мозга являются мультиполярными. Среди них различают нейроны с немногочисленными слабоветвящимися дендритами, нейроны с ветвящимися дендритами, а также переходные формы.

В зависимости от того, куда идут отростки нейронов , выделяют: внутренние нейроны, отростки которых заканчиваются синапсами в пределах спинного мозга; пучковые нейроны, нейрит которых идет в составе пучков (проводящих путей) в другие отделы спинного мозга или в головной мозг; корешковые нейроны, аксоны которых покидают спинной мозг в составе передних корешков.

На поперечном срезе нейроны группируются в ядра, в составе которых находятся сходные по строению и функции нейроны. На продольном срезе эти нейроны располагаются послойно в виде колонки, что отчетливо видно в области заднего рога. Нейроны каждой колонки иннервируют строго определенные области тела. О закономерностях группировки нейронов и их функциях можно судить по пластинам Рекседа (1-Х). В центре заднего рога располагается собственное ядро заднего рога, у основания заднего рога - грудное ядро (Кларка), латеральнее и несколько глубже располагаются базилярные ядра, в промежуточной зоне - медиальное промежуточное ядро. В дорсальной части заднего рога из глубины кнаружи последовательно располагаются мелкие нейроны студневидного вещества (роландова), далее - мелкие нейроны губчатой зоны и, наконец, - пограничная зона, содержащая мелкие нейроны.

Аксоны чувствительных нейронов из спинальных ганглиев входят в спинной мозг через задние корешки и далее в краевую зону, где делятся на две ветви: короткую нисходящую и длинную восходящую. По боковым ответвлениям от этих ветвей аксона импульсы передаются на ассоциативные нейроны серого вещества. Болевая, температурная и тактильная чувствительность проецируется на нейроны студневидного вещества и собственного ядра заднего рога. В составе студневидного вещества находятся интернейроны, продуцирующие опиоидные пептиды, которые влияют на болевые ощущения (так называемые "ворота боли"). Импульсы от внутренних органов передаются на нейроны ядер промежуточной зоны. Сигналы от мышц, сухожилий, суставных капсул и др. (проприорецепция) направляются на ядро Кларка и другие ядра. Аксоны нейронов этих ядер формируют восходящие проводящие пути.

В задних рогах спинного мозга много диффузно расположенных нейронов, аксоны которых заканчиваются в пределах спинного мозга той же или противоположной стороны серого вещества. Аксоны этих нейронов выходят в белое вещество и тут же делятся на нисходящую и восходящую ветви. Распространяясь на уровне 4-5 спинномозговых сегментов, эти ветви образуют в совокупности собственные пучки белого вещества, непосредственно прилежащие к серому веществу. При этом различают задний, боковой и передний собственные пучки. Все эти пучки белого вещества относятся к собственному аппарату спинного мозга. От аксонов, входящих в состав собственных пучков, отходят коллатерали, заканчивающиеся синапсами на двигательных нейронах. Благодаря этому создаются условия для лавинообразного нарастания числа нейронов, передающих импульсы по рефлекторным дугам собственного аппарата спинного мозга.

Часть II . Частная гистология.

ЛЕКЦИЯ 9: Нервная система.

План лекции:

1. Эволюция нервной системы у животных.

2. Источники, закладка и развитие нервной системы у человека.

3. Гистологическое строение, функции спинномозговых узлов.

4. Гистологическое строение спинного мозга.

5. Краткая морфофункциональная характеристика ствола мозга.

1. Эволюция нервной системы у животных.

Нервная система (НС) осуществляет регуляцию всех жизненных процессов в организме и его взаимодействие с внешним миром и представляет собой высшую интегрирующую систему. НС функционирует на основе рефлексов - ответных реакций организма, осуществляемых при посредстве ЦНС. Морфологическим субстратом рефлексов является рефлекторные дуги, состоящие из цепи афферентных, ассоциативных и эффекторных нейронов.

Число нейроцитов в человеческом мозге достигает порядка 1011 или, по мнению других авторов, на порядок больше. Общее число синапсов ориентировочно 1015-1018.

Эволюция нервной системы тесно связано с эволюцией мышечных тканей. Клетки многоклеточных животных постепенно специализируется для выполнения различных функций. Мышечные клетки появляются в эволюции раньше, чем нервные клетки. Эти первопредки мышечных клеток находятся на поверхности тела и способны реагировать на внешние воздействия сокращением. Хлопин называл их мионейроэпителиальными клетками.

В ходе дальнейшего развития многоклеточных организмов мышечные клетки уходят в более глубокие слои тела, поэтому появляется необходимость в чувствительных клетках, доступных к поверхностной стимуляции раздражителями и способные передавать возбуждение глубже лежащим мышечным клеткам. Так появились организмы, имеющие нейроны на поверхности тела, отростки которых находятся в прямом контакте с мышечными клетками.

Следующей ступенью развития нервной системы является появление нервных цепей, сначала из 2-х нейронов, а затем и с большим количеством нейронов. Например, такие 2-х нейронные цепи имеются в каждом сегменте дождевого червя. 1-й нейрон (афферентный, чувствительный) лежит на поверхности тела, аксон 1-го нейрона передает импульс глубже лежащему 2-му нейрону (эфферентный, моторный), а 2-й нейрон вызывает сокращение мышечных клеток сегмента.

На следующем этапе появляются межсегментные нейроны у сегментированных животных. Это позволяет координировать совгласованные действия сегментов.

Увеличение числа этих соединений привело к появлению пучка, тянущегося вдоль тела близко к центральной оси, в конечном виде - спинного мозга и головного мозга.

В целом для эволюции нервной системы характерно консервативность: у высших сохраняется признаки сегментарности, присущие низшим; химическая передача импульсов в синапсах и у низших, и у высших. Чем выше уровень организации, тем выраженнее в эмбриональном периоде опережающее развитие и созревание нервной системы. Чем выше уровень организации вида, тем большее число бластомеров зародыша используется для закладки нервной системы. Так, у человека 1/3 площади поверхности оплодотворенной яйцеклетки является презумптивной зоной (будущей зоной) нервной трубки.

2. Источники, закладка и развитие нервной системы у человека.

Развитие нервной системы начинается с утолщения дорсальной ЭКТОДЕРМЫ и формированием нервной пластинки, тянущейся вдоль оси тела. В дальнейшем нервная пластинка прогибается и образуется нервный желобок, который, смыкаясь, превращается в трубку. Вначале нервная трубка сохраняет связь с эктодермой, в последующем отрывается и располагается под ней самостоятельно. При этом из материала зоны прикрепления нервной трубки с эктодермой обособляются парные ганглиозные пластинки или нервные гребни, тянущиеся вдоль нервной трубки.

Материал ганглиозных пластинок дифференцируется в структуры:

1. Клетки ганглиозной пластинки в головном конце вместе с клетками плакод участвуют в формировании ядер V, VII, IX, X пар черепных нервов.

2. Часть клеток мигрирует латерально, обратно включаются в состав эктодермы и в дальнейшем дифференцируются в меланоциты эпидермиса кожи.

3. Часть клеток мигрирует вентрально между нервной трубкой и сомитами, дифференцируются в нервные ткани ганглиев вегетативной нервной системы и хромофинные клетки корковой части надпочечников.

4. Часть клеток остается на месте ганглиозной пластинки и в дальнейшем становятся закладкой спинальных ганглиев (спинномозговых узлов).

Нервная трубка в момент закладки состоит из 1 слоя клеток - медулобластов, однако вскоре клетки начинают пролиферацию и нервная трубка становится многослойной. При этом базальный слой медулобластов располагается на границе с каналом нервной трубки, часть клеток в ходе деления вытесняется в вышележащие слои, т.е. в направлении к наружной поверхности трубки. Медулабластов базального слоя называют герменативными или вентрикулярными клетками. Вентрикулярные клетки дифференцируются в 2-х направлениях:

1. Спонгиобласты, глиобласты, макроглиоциты (эпиндимоциты, астроциты, олигодендроглиоциты).

2. Нейробласты, молодые нейроциты, зрелые нейроциты.

Микроглиоциты закладываются из внедряющихся в нервную трубку мезенхимных клеток.

Классификация НС:

I. Морфологическая классификация:

1. ЦНС (спинной мозг, головной мозг).

2. Периферическая НС (периферические нервные стволы, нервы, ганглии, нервные окончания, нервные узлы).

III. Физиологическая классификация:

4. Соматическая НС (иннервирует все тело, за исключением внутренних органов, сосудов, желез).

5. Вегетативная (автономная) НС (регулирует деятельность внутренних органов, сосудов, желез).

3. Гистологическое строение, функции спинномозговых узлов.

Спинномозговые узлы (спинальные ганглии) - закладываются в эмбриональном периоде из ганглиозной пластинки (нейроциты и глиальные элементы) и мезенхимы (микроглиоциты, капсула и сдт прослойки).

Спинномозговые узлы (СМУ) расположены по ходу задних корешков спинного мозга. Снаружи покрыты сдт капсулой, от капсулы внутрь отходят прослойки-перегородки из рыхлой сдт с кровеносными сосудами. Под капсулой группами располагаются тела нейроцитов. Нейроциты СМУ крупные, диаметр тел до 120 мкм. Ядра нейроцитов крупные, с четкими ядрышками, располагаются в центре клетки; в ядрах преобладает эухроматин. Тела нейроцитов окружены клетками сателлитами или мантийными клетками - разновидность олигодендроглиоцитов. Нейроциты СМУ по строению псевдоуниполярные - аксон и дендрит отходят от тела клетки вместе как один отросток, далее Т-образно расходятся. Дендрит идет на периферию и образует в коже, в толще сухожилий и мышц, во внутренних органах чувствительные рецепторные окончания, воспринимающие болевые, температурные, тактильные раздражители, т.е. нейроциты СМУ по функции чувствительные. Аксоны по заднему корешку поступают в спинной мозг и передают импульсы на ассоциативные нейроциты спинного мозга. В центральной части СМУ располагаются параллельно друг другу нервные волокна, покрытые леммоцитами.

4. Гистологическое строение спинного мозга.

Спинной мозг (СМ) состоит из 2-х симметричных половин, разделенных спереди глубокой щелью, а сзади спайкой. На поперечном срезе хорошо видно серое и белое вещество. Серое вещество СМ на срезе имеет форму бабочки или буквы "H" и имеет рога - передние, задние и боковые рога. Серое вещество СМ состоит из тел нейроцитов, нервных волокон и нейроглии.

Обилие нейроцитов обуславливает серый цвет серого вещества СМ. По морфологии нейроциты СМ в своем подавляющем большинстве мультиполярные. Нейроциты в сером веществе окружены спутанными как войлок нервными волокнами - нейропилью. Аксоны в нейропиле слабомиелинизированы, а дендриты и вовсе не миелинизированы. Сходные по размерам, тонкому строению и функциям нейроциты СМ располагаются группами и образуют ядра.

Среди нейроцитов СМ различают следующие типы:

1. Корешковые нейроциты - располагаются в ядрах передних рогов, по функции являются двигательными; аксоны корешковых нейроцитов в составе передних корешков покидают СМ, проводят к скелетной мускулатуре двигательные импульсы.

2. Внутренние клетки - отростки этих клеток не покидают пределы серого вещества СМ, оканчиваются в пределах данного сегмента или соседнего сегмента, т.е. по функции являются ассоциативными.

3. Пучковые клетки - отростки этих клеток образуют нервные пучки белого вещества и направляются в соседние сегменты или вышележащие отделы НС, т.е. по функции тоже являются ассоциативными.

Задние рога СМ более короткие, узкие и содержат следующие виды нейроцитов:

а) пучковые нейроциты - располагаются диффузно, получают чувствительные импульсы от нейроцитов спинальных ганглиев и передают по восходящим путям белого вещества в вышележащие отделы НС (в мозжечок, в кору больших полушарий);

б) внутренние нейроциты - передают чувствительные импульсы со спинальных ганглиев в двигательные нейроциты передних рогов и в соседние сегменты.

В задних рогах СМ имеются 3 зоны:

1. Губчатое вещество - состоит из мелких пучковых нейроцитов и глиоцитов.

2. Желатинозное вещество - содержит большое количество глиоцитов, нейроцитов практически не имеет.

3. Собственное ядро СМ - состоит из пучковых нейроцитов, передающих импульсы в мозжечок и зрительный бугор.

4. Ядро Кларка (Грудное ядро) - состоит из пучковых нейроцитов, аксоны которых в составе боковых канатиков направляются в мозжечок.

В боковых рогах (промежуточная зона) имеются 2 медиальные промежуточные ядра и латеральное ядро. Аксоны пучковых ассоциативных нейроцитов медиальных промежуточных ядер передают импульсы в мозжечок. Латеральное ядро боковых рогов в грудном и поясничном отделе СМ является центральным ядром симпатического отдела вегетативной НС. Аксоны нейроцитов этих ядер идут в составе передних корешков СМ как преганглионарные волокна и оканчиваются на нейроцитах симпатического ствола (превертебральные и паравертебральные симпатические ганглии). Латеральное ядро в сакральном отделе СМ является центральным ядром парасимпатического отдела вегетативной НС.

Передние рога СМ содержат большое количество мотонейронов (двигательных нейронов), образующие 2 группы ядер:

1. Медиальная группа ядер - иннервирует мышцы туловища.

2. Латеральная группа ядер хорошо выражена в области шейного и поясничного утолщения - иннервирует мышцы конечностей.

По функции среди мотонейронов передних рогов СМ различают:

1. -мотонейроны большие - имеют диаметр до 140 мкм, передают импульсы на экстрафузальные мышечные волокна и обеспечивают быстрое сокращение мышц.

2. -мотонейроны малые - поддерживают тонус скелетной мускулатуры.

3. -мотонейроны - передают импульсы интрафузальным мышечным волокнам (в составе нервно-мышечного веретена).

Мотонейроны - это интегративная единица СМ, они испытывают влияние и возбуждающих и тормозных импульсов. До 50% поверхности тела и дендритов мотонейрона покрыты синапсами. Среднее число синапсов на 1 мотонейроне СМ человека составляет 25-35 тысяч. Одномоментно на 1 мотонейрон могут передавать импульсы с тысячи синапсов идущие от нейронов спинального и супраспинальных уровней.

Возможно и возвратное торможение мотонейронов благодаря тому, что ветвь аксона мотонейрона передает импульс на тормозные клетки Реншоу, а аксоны клеток Реншоу оканчиваются на теле мотонейрона тормозными синапсами.

Аксоны мотонейронов выходят из СМ в составе передних корешков, достигают скелетных мышц, заканчиваются на каждой мышечной волокне моторной бляшкой.

Белое вещество СМ состоит из продольно ориентированных преимущественно миелиновых нервных волокон, образующие задние (восходящие), передние (нисходящие) и боковые (и восходящие и нисходящие) канатики, а также из глиальных элементов.

5. Краткая морфофункциональная характеристика ствола мозга.

Головной мозг является высшим центральным органом регуляции всех жизненноважных функций организма, играет исключительную роль в психической или высшей нервной деятельности.

ГМ развивается из нервной трубки. Краниальный отдел нервной трубки в эмбриогенезе подразделяется на три мозговых пузыря: передний, средний и задний. В дальнейшем за счет складок и изгибов из этих пузырьков формируется пять отделов ГМ:

Продолговатый мозг;

Задний мозг;

Средний мозг;

Промежуточный мозг;

Конечный мозг.

Дифференцировка клеток нервной трубки в краниальном отделе при развитии ГМ протекает в принципе аналогично с развитием спинного мозга: т.е. камбием служит слой вентрикулярных (герменативных) клеток, расположенных на границе с каналом трубки. Вентрикулярные клетки интенсивно делятся и мигрируют в вышележащие слои и дифференцируются в 2-х направлениях:

1. Нейробласты нейроциты. Между нейроцитами устанавливаются сложные взаимосвязи, формируются ядерные и экранные нервные центры. Причем в отличие от спинного мозга в ГМ преобладают центры экранного типа.

2. Глиобласты глиоциты.

Проводящие пути ГМ, многочисленные ядра ГМ - их локализацию и функции Вы подробно изучаете на кафедре нормальной анатомии человека, поэтому на этой лекции мы сосредоточимся на особенностях гистологического строения отдельных частей ГМ.

СТВОЛ МОЗГА - к нему относят продолговатый мозг, мост, мозжечок и образования среднего и промежуточного мозга.

ПРОДОЛГОВАТЫЙ МОЗГ состоит из серого вещества, организованного в виде ядер и пучков нисходящих и восходящих нервных волокон. Из ядер различают:

1. Чувствительные и двигательные ядра черепных нервов - ядра подьязычного, добавочного, блуждающего, языкоглоточного, предверно-улиткового нервов продолговатого мозга. Причем двигательные ядра располагаются преимущественно медиально, а чувствительные - латерально.

2. Ассоциативные ядра - нейроны которых образуют связи с мозжечком и таламусом.

Гистологически все эти ядра состоят из мультиполярных нейроцитов.

В центральной части ПМ находится ретикулярная формация (РФ), которая начинается в верхней части спинного мозга, проходит через ПМ, распространяется далее в задний, средний и промежуточный мозг. РФ состоит из сети нервных волокон и мелких групп мультиполярных нейроцитов. Эти нейроциты имеют длинные, слабоветвящиеся дендриты и аксон с многочисленными коллатералями, благодаря которым образуются многочисленные синаптические связи с огромным числом нейроцитов и восходящими и нисходящими нервными волокнами. Нисходящее влияние РФ обеспечивает регуляцию вегетативно-висцеральных функций, контроль над тонусом мышц и стереотипными движениями. Восходящее влияние РФ обеспечивает фон возбудимости коры БПШ как необходимое условие для бодроствующего состояния мозга. РФ передает импульсы не в строго определенные участки коры, а диффузно. В целом РФ образует окольный афферентный путь в кору ГМ, по который импульсы проходят в 4-5 раз медленнее, чем по прямым афферентным путям.

Кроме ядер и РФ в продолговатом мозге имеются как нисходящие и восходящие пути.

МОСТ. В дорсальной части моста находятся ядра V, VI, VII, VIII черепных нервов, ретикулярная формация и волокна проводящих путей. В вентральной части моста имеются собственные ядра моста и волокна пирамидных путей.

СРЕДНИЙ МОЗГ в качестве наиболее крупных и важных образований имеет красные ядра; они состоят из гигантских нейроцитов, от которых начинается руброспинальный путь. В красном ядре переключаются волокна от мозжечка, таламуса и двигательных центров коры БПШ.

ПРОМЕЖУТОЧНЫЙ МОЗГ. Главная часть промежуточного мозга - это таламус (зрительный бугор), содержащий много ядер. Нейроциты ядер таламуса получают афферентную импульсацию и передают ее коре БПШ. В подушке таламуса заканчиваются волокна зрительного пути. Таламус - коллектор почти всех афферентных путей. Под таламусом находится гипоталамус - один из высших центров интеграции вегетативной и соматической иннервации с эндокринной системой. Гипоталамус является узлом связи, соединяющий ретикулярную формацию с лимбической системой, соматическую НС с вегетативной НС, кору БПШ с эндокринной системой. В составе ядер гипоталамуса(7 групп) имеются нейросекреторные клетки вырабатывающие гормоны: окситоцин, вазопрессин, либерины и статины. Эту функцию гипоталамуса мы подробно изучим по теме "Эндокринная система".

ЛЕКЦИЯ 10: Мозжечок. Кора больших полушарий.

План лекции:

1. Гистологическое строение, функции мозжечка.

2. Кора больших полушарий. Цитомиелоархитектоника коры. Современные представления о морфофункциональной единице коры.

3. Вегетативная нервная система. Особенности рефлекторных дуг вегетативной нервной системы.

4. Гистологическое строение оболочек спинного и головного мозга.

5. Особенности кровоснабжения нервной системы.

6. Возрастные изменения, реактивность и регенерация тканей нервной системы.

1. Гистологическое строение, функции мозжечка.

Мозжечок является центральным органом равновесия и координации движений. Различают серое и белое вещество мозжечка. Серое вещество представлено корой мозжечка и ядрами мозжечка (зубовидное, пробковидное и шарообразное).

В коре мозжечка имеется 3 слоя:

1. Наружный, молекулярный, слой - состоит из корзинчатых и звездчатых нейроцитов, по функции являющихся ассоциативными.

2. Средний, ганглионарный слой - состоит из 1 ряда грушевидных клеток Пуркинье. Это довольно крупные клетки - диаметр тела до 60 мкм. Дендриты, поднимаются в молекулярный слой и сильно разветвляясь, располагаются в 1-ой плоскости, а аксоны образуют эфферентные (выходящие) пути мозжечка и после переключения в ядрах мозжечка посылают импульсы через руброспинальный путь к мотонейронам спинного мозга.

3. Внутренний, зернистый слой - состоит из клеток зерен, больших звездчатых нейроцитов, веретеновидно-горизонтальных нейроцитов (все клетки по функции ассоциативные).

Афферентные волокна мозжечка:

1. Моховидные волокна - несут импульсы с моста и продолговатого мозга. Образуют синапсы на клетках зернистого слоя, а аксоны клеток зернистого слоя поднимаются в молекулярный слой и передают импульсы дендритам грушевидных клеток непосредственно или через клетки молекулярного слоя.

2. Лазящие волокна - несут импульсы со спинного мозга и с вестибулярного аппарата. Лазящие волокна не переключаются на вставочных клетках мозжечка, а проходят транзитом через зернистый и ганглионарные слои в молекулярный слой и образуют там синапсы с дендритами грушевидных клеток Пуркинье.

Поступающая информация в коре мозжечка перерабатывается и на основе этого производится коррекция двигательных актов.

Эфферентные пути мозжечка начинаются с грушевидных клеток Пуркинье ганглионарного слоя. Аксоны этих клеток переключаются на клетках ядра мозжечка и через руброспинальный путь посылают импульсы мотонейронам спинного мозга.

Мозжечок сам не сохраняет память о двигательных актах, он только их регулирует, причем эта регуляция непроизвольная, неосознанная.

Клетки коры мозжечка очень чувствительны к действию интоксикации. Ярким примером этого является алкогольное опьянение. При алкогольном опьянении нарушение функций клеток мозжечка приводит к расстройству координации движений и равновесия.

2. Кора больших полушарий. Цитомиелоархитектоника коры. Современные представления о морфофункциональной единице коры.

Кора больших полушарий (КБПШ). Эмбриональный гистогенез КБПШ начинается на 2-ом месяце эмбрионального развития. Учитывая значение КБПШ для человека сроки ее закладки и развития являются одним из важных критических периодов. Воздействия многих неблагоприятных факторов в эти сроки могут привести к нарушениям и порокам развития головного мозга.

Итак, на 2-ом месяце эмбриогенеза из вентрикулярного слоя стенки конечного мозга нейробласты мигрируют вертикально вверх вдоль радиально расположенных волокон глиоцитов и формируют самый внутренний 6-ой слой коры. Затем следуют следующие волны миграции нейробластов, причем мигрирующие нейробласты при этом проходят сквозь ранее образовавшиеся слои и это способствует установлению между клетками большого числа синаптических контактов. Шестислойная структура КБПШ становится четко выраженной на 5-8-ые месяцы эмбриогенеза, причем гетерохронно в разных областях и зонах коры.

Кора БПШ представлена слоем серого вещества толщиной 3-5 мм. В коре насчитывают до 15 и более млрд. нейроцитов, некоторые авторы допускают до 50 млрд. Все нейроциты коры по морфологии мультиполярные. Среди них по форме различают звездчатые, пирамидные, веретеновидные, паукообразные и горизонтальные клетки. Пирамидные нейроциты имеют тело треугольной или пирамидной формы, диаметр тела 10-150 мкм (малые, средние, крупные и гигантские). От основания пирамидной клетки отходит аксон, участвующий при формировании нисходящих пирамидных путей, ассоциативных и комиссуральных пучков, т.е. пирамидные клетки являются эфферентными нейроцитами коры. От вершины и боковых поверхностей треугольного тела нейроцитов отходят длинные дендриты. Дендриты имеют шипики - места синаптических контактов. У одной клетки таких шипиков может быть до 4-6 тысяч.

Звездчатые нейроциты имеют форму звезды; дендриты отходят от тела во все стороны, короткие и без шипиков. Звездчатые клетки являются главными воспринимающими сенсорными элементами КБПШ и основная их масса располагается во 2-ом и 4-ом слое КБПШ.

КБПШ подразделяют на лобную, височную, затылочную и теменную долю. Доли делят на области и цитоархитектонические поля. Цитоархитектонические поля - это корковые центры экранного типа. По анатомии Вы подробно изучаете локализации этих полей (центр обоняния, зрения, слуха и т.д.). Эти поля взаимоперекрываются, поэтому при нарушении функций, повреждениях какого либо поля, его функцию частично могут взять на себя соседние поля.

Для нейроцитов коры БПШ характерно закономерное послойное расположение, что образует цитоархитектонику коры.

В коре принято различать 6 слоев:

1. Молекулярный слой (самый поверхностный) - состоит в основном из тангенциальных нервных волокон, имеется небольшое количество веретеновидных ассоциативных нейроцитов.

2. Наружный зернистый слой - слой из мелких звездчатых и пирамидных клеток. Их дендриты находятся в молекулярном слое, часть аксонов направляются в белое вещество, другая часть аксонов поднимается в молекулярный слой.

3. Пирамидный слой - состоит из средних и крупных пирамидных клеток. Аксоны идут в белое вещество и в виде ассоциативных пучков направляются в другие извилины данного полушария или в виде комиссуральных пучков в противоположное полушарие.

4. Внутренний зернистый слой - состоит из сенсорных звездчатых нейроцитов, имеющих ассоциативные связи с нейроцитами выше- и нижележащих слоев.

5. Ганглионарный слой - состоит из крупных и гигантских пирамидных клеток. Аксоны этих клеток направляются в белое вещество и образуют нисходящие проекционные пирамидные пути, также комиссуральные пучки в противоположное полушарие.

6. Слой полиморфных клеток - образован нейроцитами самой различной формы (отсюда название). Аксоны нейроцитов участвуют при формировании нисходящих проекционных путей. Дендриты пронизывают всю толщу коры и достигают молекулярного слоя.

Структурно-функциональной единицей коры БПШ является модуль или колонка. Модуль - это совокупность нейроцитов всех 6-ти слоев, расположенных на одном перпендикулярном пространстве и тесно взаимосвязанных между собой и подкорковыми образованьями. В пространстве модуль можно представить как цилиндр, пронизывающий все 6 слоев коры, ориентированный своей длинной осью перпендикулярно к поверхности коры и имеющий диаметр около 300 мкм. В коре БПШ человека насчитывается около 3 млн. модулей. В каждом модуле содержится до 2 тысяч нейроцитов. Вход импульсов в модуль происходит с таламуса по 2-м таламокортикальным волокнам и по 1-му кортикокортикальному волокну с коры данного или противоположного полушария. Кортикокортикальные волокна начинаются с пирамидных клеток 3-го и 5-го слоя коры данного или противоположного полушария, входят в модуль и пронизывают ее с 6-го по 1-й слой, отдавая коллатерали для синапсов на каждом слое. Таламокортикальные волокна - специфические афферентные волокна идущие с таламуса, пронизывают отдавая коллатерали с 6-го по 4-ый слой в модуле. Благодаря наличию сложной взаимосвязи нейроцитов всех 6-ти слоев поступившая информация анализируется в модуле. Выходные эфферентные пути из модуля начинаются с крупных и гигантских пирамидных клеток 3-го, 5-го и 6-го слоя. Кроме участия в формировании проекционных пирамидных путей каждый модуль устанавливает связи с 2-3 модулями данного и противоположного полушария.

введения препарата... цитологии , гистологии и эмбриологии 9044 Проводимые профессорско-преподавательским составом кафедр факуль­тета научные исследования ... по курсу «История ветеринарии» на 1 курсе идет профессиональная...

  • - естественные науки - физико-математические науки - химические науки - науки о земле (геодезические геофизические геологические и географические науки) (3)

    Документ

    Официальной программе по гистологии , цитологии и эмбриологии для... введении освещена история исследований , ... Евгений Владимирович. Общая часть уголовного права в 20 лекциях : курс лекций / Благов, ...

  • - естественные науки - физико-математические науки - химические науки - науки о земле (геодезические геофизические геологические и географические науки) (4)

    Документ

    Официальной программе по гистологии , цитологии и эмбриологии для... введении освещена история становления и методология различных школ лингвокультурных исследований , ... Евгений Владимирович. Общая часть уголовного права в 20 лекциях : курс лекций / Благов, ...

  • Основные деления классификации 1 общенаучное и междисциплинарное знание 2 естественные науки 3 техника технические науки

    Литература

    ... цитология см. 52.5 28.706 Анатомия и гистология человека. Кожа человека, ткани, части тела... .5 Социология. Социология как наука . Методы конкретных прикладных социологических исследований . История социологии. Социология общества в целом...

  • Нервная система осуществляет объединение частей организма в единое целое (интеграцию), обеспечивает регуляцию разнообразных процессов, координацию функции различных органов и тканей и взаимодействие организма с внешней средой. Она воспринимает многообразную информацию, поступающую из внешней среды и из внутренних органов, перерабатывает ее и генерирует сигналы, обеспечивающие ответные реакции, адекватные действующим раздражителям. В основе деятельности нервной системы лежат рефлекторные дуги - цепочки нейронов, которые обеспечивают реакции рабочих органов (органов-мишеней) в ответ на раздражение рецепторов. В рефлекторных дугах нейроны, связанные друг с другом синапсами, образуют три звена: рецепторное (афферентное) , эффекторное и расположенное между ними ассоциативное (вставочное).

    Отделы нервной системы

    Анатомическое подразделение отделов нервной системы:

    (1)центральная нервная система (ЦНС) -

    включает головной и спинной мозг;

    (2)периферическая нервная система - включает периферические нервные ганглии (узлы), нервы и нервные окончания (описаны в разделе «Нервная ткань»).

    Физиологическое подразделение отделов нервной системы (в зависимости от характера иннервации органов и тканей):

    (1)соматическая (анимальная) нервная система - контролирует преимущественно функции произвольного движения;

    (2)автономная (вегетативная) нервная система - регулирует деятельность внутренних органов, сосудов и желез.

    Автономная нервная система подразделяется на взаимодействующие друг с другом симпатический и парасимпатический отделы, которые различаются локализацией периферических узлов и центров в мозгу, а также характером влияния на внутренние органы.

    В соматическую и автономную нервную систему входят звенья, расположенные в ЦНС и периферической нервной системе. Функционально ведущей тканью органов нервной системы является нервная ткань, включающая нейроны и глию. Скопления нейронов в ЦНС обычно называют ядрами, а в периферической нервной системе - ганглиями (узлами). Пучки нервных волокон в центральной нервной системе носят названия трактов, в периферической - нервов.

    Нервы (нервные стволы) связывают нервные центры головного и спинного мозга с рецепторами и рабочими органами. Они образованы пучками миелиновых и безмиелиновых нервных волокон, которые объединены соединительнотканными компонентами (оболочками): эндоневрием, периневрием и эпиневрием (рис. 114-118). Большинство нервов являются смешанными, т. е. включают афферентные и эфферентные нервные волокна.

    Эндоневрий - тонкие прослойки рыхлой волокнистой соединительной ткани с мелкими кровеносными сосудами, окружающие отдельные нервные волокна и связывающие их в единый пучок.

    Периневрий - оболочка, покрывающая каждый пучок нервных волокон снаружи и отдающая перегородки вглубь пучка. Он имеет пластинчатое строение и образован концентрическими пластами уплощенных фибробластоподобных клеток, связанных плотными и щелевыми соединениями. Между слоями клеток в пространствах, заполненных жидкостью, располагаются компоненты базальной мембраны и продольно ориентированные коллагеновые волокна.

    Эпиневрий - наружная оболочка нерва, связывающая воедино пучки нервных волокон. Он состоит из плотной волокнистой соединительной ткани, содержащей жировые клетки, кровеносные и лимфатические сосуды (см. рис. 114).

    Структуры нерва, выявляемые с помощью различных методов окраски. Различные гистологические методы окраски позволяют более детально и избирательно изучить отдельные компоненты

    нерва. Так, осмирование дает контрастное окрашивание миелиновых оболочек нервных волокон (позволяя оценить их толщину и дифференцировать миелиновые и безмиелиновые волокна), однако отростки нейронов и соединительнотканные компоненты нерва остаются очень слабо окрашенными или неокрашенными (см. рис. 114 и 115). При окраске гематоксилином-эозином миелиновые оболочки не окрашиваются, отростки нейронов имеют слабо базофильное окрашивание, однако хорошо выявляются ядра нейролеммоцитов в нервных волокнах и все соединительнотканные компоненты нерва (см. рис. 116 и 117). При окраске азотнокислым серебром ярко окрашиваются отростки нейронов; миелиновые оболочки остаются неокрашенными, соединительнотканные компоненты нерва выявляются слабо, их структура не прослеживается (см. рис. 118).

    Нервные ганглии (узлы) - структуры, образованные скоплениями нейронов вне ЦНС, - разделяются на чувствительные и автономные (вегетативные). Чувствительные ганглии содержат псевдоуниполярные или биполярные (в спиральном и вестибулярном ганглиях) афферентные нейроны и располагаются преимущественно по ходу задних корешков спинного мозга (чувствительные узлы спинномозговых нервов) и некоторых черепно-мозговых нервов.

    Чувствительные ганглии (узлы) спинномозговых нервов имеют веретеновидную форму и покрыты капсулой из плотной волокнистой соединительной ткани. По периферии ганглия находятся плотные скопления тел псевдоуниполярных нейронов, а центральная часть занята их отростками и расположенными между ними тонкими прослойками эндоневрия, несущими сосуды (рис. 121).

    Псевдоуниполярные чувствительные нейроны характеризуются сферическим телом и светлым ядром с хорошо заметным ядрышком (рис. 122). Цитоплазма нейронов содержит многочисленные митохондрии, цистерны гранулярной эндоплазматической сети, элементы комплекса Гольджи (см. рис. 101), лизосомы. Каждый нейрон окружен слоем прилежащих к нему уплощенных клеток олигодендроглии или мантийными глиоцитами) с мелкими округлыми ядрами; снаружи глиальной оболочки имеется тонкая соединительнотканная капсула (см. рис. 122). От тела псевдоуниполярного нейрона отходит отросток, разделяющийся Т-образно на периферическую (афферентную, дендритную) и центральную (эфферентную, аксональную) ветви, которые покрываются миелиновыми оболочками. Периферический отросток (афферентная ветвь) заканчивается рецепторами,

    центральный отросток (эфферентная ветвь) в составе заднего корешка вступает в спинной мозг (см. рис. 119).

    Автономные нервные ганглии образованы скоплениями мультиполярных нейронов, на которых многочисленные синапсы образуют преганглионарные волокна - отростки нейронов, чьи тела лежат в ЦНС (см. рис. 120).

    Классификация автономных ганглиев. По локализации: ганглии могут располагаться вдоль позвоночника (паравертебральные ганглии) или впереди него (превертебральные ганглии), а также в стенке органов - сердца, бронхов, пищеварительного тракта, мочевого пузыря и др. (интрамуральные ганглии - см., например, рис. 203, 209, 213, 215) или вблизи их поверхности.

    По функциональному признаку автономные нервные ганглии разделяются на симпатические и парасимпатические. Эти ганглии различаются своей локализацией (симпатические лежат пара- и превертебрально, парасимпатические - интрамурально или вблизи органов), а также локализацией нейронов, дающих преганглионарные волокна, характером нейромедиаторов и направленностью реакций, опосредуемых их клетками. Большинство внутренних органов имеют двойную автономную иннервацию. Общий план строения симпатических и парасимпатических нерв ных ганглиев сходен.

    Строение автономных ганглиев. Автономный ганглий снаружи покрыт соединительнотканной капсулой и содержит диффузно или группами расположенные тела мультиполярных нейронов, их отростки в виде безмиелиновых или (реже) миелиновых волокон и эндоневрий (рис. 123). Тела нейронов - базофильные, неправильной формы, содержат эксцентрично расположенное ядро; встречаются многоядерные и полиплоидные клетки. Нейроны окружены (обычно не полностью) оболочками из глиальных клеток (сателлитными глиальными клетками, или мантийными глиоцитами). Снаружи от глиальной оболочки располагается тонкая соединительнотканная оболочка (рис. 124).

    Интрамуральные ганглии и связанные с ними проводящие пути ввиду их высокой автономии, сложности организации и особенностей медиаторного обмена некоторыми авторами выделяются в самостоятельный метасимпатический отдел автономной нервной системы. В интрамуральных ганглиях описаны нейроны трех типов (см. рис. 120):

    1) Длинноаксонные эфферентные нейроны (клетки I типа Догеля) с короткими дендритами и длинным аксоном, идущим за пределы узла

    к клеткам рабочего органа, на которых он образует двигательные или секреторные окончания.

    2)Равноотростчатые афферентные нейроны (клетки II типа Догеля) содержат длинные дендриты и аксон, уходящий за пределы данного ганглия в соседние и образующий синапсы на клетках I и III типов. Входят в качестве рецепторного звена в состав местных рефлекторных дуг, которые замыкаются без захода нервного импульса в центральную нервную систему.

    3)Ассоциативные клетки (клетки III типа Догеля) - местные вставочные нейроны, соединяющие своими отростками несколько клеток I и II типов. Дендриты этих клеток не выходят за пределы узла, а аксоны направляются в другие узлы, образуя синапсы на клетках I типа.

    Рефлекторные дуги в соматическом (анимальном) и автономном (вегетативном) отделах нервной системы обладают рядом особенностей (см. рис. 119 и 120). Основные различия заключаются в ассоциативном и эффекторном звеньях, поскольку рецепторное звено сходно: оно образовано афферентными псевдоуниполярными нейронами, тела которых располагаются в чувствительных ганглиях. Периферические отростки этих клеток образуют чувствительные нервные окончания, а центральные вступают в спинной мозг в составе задних корешков.

    Ассоциативное звено в соматической дуге представлено вставочными нейронами, дендриты и тела которых расположены в задних рогах спинного мозга, а аксоны направляются в передние рога, передавая импульсы на тела и дендриты эфферентных нейронов. В автономной дуге дендриты и тела вставочных нейронов расположены в боковых рогах спинного мозга, а аксоны (преганглионарные волокна) покидают спинной мозг в составе передних корешков, направляясь в один из автономных ганглиев, где и оканчиваются на дендритах и телах эфферентных нейронов.

    Эффекторное звено в соматической дуге образовано мультиполярными мотонейронами, тела и дендриты которых лежат в передних рогах спинного мозга, а аксоны выходят из спинного мозга в составе передних корешков, направляются к чувствительному ганглию и далее в составе смешанного нерва - к скелетной мышце, на волокнах которой их веточки образуют нейро-мышечные синапсы. В автономной дуге эффекторное звено образовано мультиполярными нейронами, тела которых лежат в составе автономных ганглиев, а аксоны (постганглионарные волокна) в составе нервных стволов и их ветвей направляются к клеткам рабочих органов - гладких мышц, желез, сердца.

    Органы центральной нервной системы Спинной мозг

    Спинной мозг имеет вид округлого тяжа, расширенного в шейном и пояснично-крестцовом отделах и пронизанного центральным каналом. Он состоит из двух симметричных половин, разделенных спереди передней срединной щелью, сзади - задней срединной бороздой, и характеризуется сегментарным строением; с каждым сегментом связана пара передних (двигательных, вентральных) и пара задних (чувствительных, дорсальных) корешков. В спинном мозгу различают серое вещество, расположенное в его центральной части, и белое вещество, лежащее по периферии (рис. 125).

    Серое вещество на поперечном разрезе имеет вид бабочки (см. рис. 125) и включает парные передние (вентральные), задние (дорсальные) и боковые (латеральные) рога. Рога серого вещества обеих симметричных частей спинного мозга связаны друг с другом в области передней и задней серой спайки. В сером веществе находятся тела, дендриты и (частично) аксоны нейронов, а также глиальные клетки. Между телами нейронов находится нейропиль - сеть, образованная нервными волокнами и отростками глиальных клеток. Нейроны располагаются в сером веществе в виде не всегда резко разграниченных скоплений (ядер).

    Задние рога содержат несколько ядер, образованных мультиполярными вставочными нейронами, на которых оканчиваются аксоны псевдоуниполярных клеток чувствительных ганглиев (см. рис. 119), а также волокна нисходящих путей из лежащих выше (супраспинальных) центров. Аксоны вставочных нейронов а) оканчиваются в сером веществе спинного мозга на мотонейронах, лежащих в передних рогах (см. рис. 119); б) образуют межсегментарные связи в пределах серого вещества спинного мозга; в) выходят в белое вещество спинного мозга, где образуют восходящие и нисходящие проводящие пути (тракты).

    Боковые рога, хорошо выраженные на уровне грудных и крестцовых сегментов спинного мозга, содержат ядра, образованные телами мультиполярных вставочных нейронов, которые относятся к симпатическому и парасимпатическому отделам автономной нервной системы (см. рис. 120). На дендритах и телах этих клеток оканчиваются аксоны: а) псевдоуниполярных нейронов, несущих импульсы от рецепторов, расположенных во внутренних органах, б) нейронов центров регуляции вегетативных функций, тела которых находятся в продолговатом мозгу. Аксоны автономных нейронов, выходя из спинного мозга в составе передних корешков, образуют преган-

    глионарные волокна, направляющиеся к симпатическим и парасимпатическим узлам.

    Передние рога содержат мультиполярные двигательные нейроны (мотонейроны), объединенные в ядра, каждое из которых обычно тянется на несколько сегментов. Различают крупные α-мотонейроны и рассеянные среди них более мелкие γ-мотонейроны. На отростках и телах мотонейронов имеются многочисленные синапсы, оказывающие на них возбуждающие и тормозные воздействия. На мотонейронах оканчиваются: коллатерали центральных отростков псевдоуниполярных клеток чувствительных узлов; вставочных нейронов, тела которых лежат в задних рогах спинного мозга; аксоны местных мелких вставочных нейронов (клеток Реншоу), связанных с коллатералями аксонов мотонейронов; волокна нисходящих путей пирамидной и экстрапирамидной систем, несущие импульсы из коры большого мозга и ядер ствола мозга. Тела мотонейронов содержат крупные глыбки хроматофильного вещества (см. рис. 100) и окружены глиоцитами (рис. 126). Аксоны мотонейронов покидают спинной мозг в составе передних корешков, направляются к чувствительному ганглию и далее в составе смешанного нерва - к скелетной мышце, на волокнах которой они образуют нейро-мышечные синапсы (см. рис. 119).

    Центральный канал (см. рис. 128) проходит в центре серого вещества и окружен передней и задней серыми спайками (см. рис. 125). Он заполнен спинномозговой жидкостью и выстлан одним слоем кубических или столбчатых клеток эпендимы, апикальная поверхность которых покрыта микроворсинками и (частично) ресничками, а латеральные связаны комплексами межклеточных соединений.

    Белое вещество спинного мозга окружает серое (см. рис. 125) и разделяется передними и задними корешками на симметричные задние, боковые и передние канатики. Оно состоит из продольно идущих нервных волокон (преимущественно миелиновых), образующих нисходящие и восходящие проводящие пути (тракты). Последние отделены друг от друга тонкими прослойками соединительной ткани и астроцитов, которые встречаются и внутри трактов (рис. 127). Проводящие пути включают две группы: проприоспинальные (осуществляют связь между различными отделами спинного мозга) и супраспинальные пути (обеспечивают связь спинного мозга со структурами головного мозга - восходящие и нисходящие тракты).

    Мозжечок

    Мозжечок является частью головного мозга и представляет собой центр равновесия, поддер-

    жания мышечного тонуса и координации движений. Он образован двумя полушариями с большим числом бороздок и извилин на поверхности и узкой средней частью (червем). Серое вещество образует кору мозжечка и ядра; последние залегают в глубине его белого вещества.

    Кора мозжечка характеризуется высокой упорядоченностью расположения нейронов, нервных волокон и глиальных клеток всех типов. Она отличается богатством межнейронных связей, которая обеспечивают переработку поступающей в нее разнообразной сенсорной информации. В коре мозжечка различают три слоя (снаружи внутрь): 1) молекулярный слой; 2) слой клеток Пуркинье (слой грушевидных нейронов); 3) зернистый слой (рис. 129 и 130).

    Молекулярный слой содержит сравнительно небольшое количество мелких клеток, в нем находятся тела корзинчатых и звездчатых нейронов. Корзинчатые нейроны располагаются во внутренней части молекулярного слоя. Их короткие дендриты образуют связи с параллельными волокнами в наружной части молекулярного слоя, а длинный аксон идет поперек извилины, отдавая через определенные интервалы коллатерали, которые спускаются к телам клеток Пуркинье и, разветвляясь, охватывают их наподобие корзинок, образуя тормозные аксо-соматические синапсы (см. рис. 130). Звездчатые нейроны - мелкие клетки, тела которых лежат выше тел корзинчатых нейронов. Их дендриты образуют связи с параллельными волокнами, а разветвления аксона формируют тормозные синапсы на дендритах клеток Пуркинье и могут участвовать в образовании корзинки вокруг их тел.

    Слой клеток Пуркинье (слой грушевидных нейронов) содержит лежащие в один ряд тела клеток Пуркинье, оплетенные коллатералями аксонов корзинчатых клеток («корзинками»).

    Клетки Пуркинье (грушевидные нейроны) - крупные клетки с телом грушевидной формы, содержащим хорошо развитые органеллы. От него в молекулярный слой отходят 2-3 первичных (стволовых) дендрита, интенсивно ветвящихся с образованием конечных (терминальных) дендритов, достигающих поверхности молекулярного слоя (см. рис. 130). На дендритах находятся многочисленные шипики - контактные зоны возбуждающих синапсов, образуемых параллельными волокнами (аксонами зернистых нейронов), и тормозных синапсов, образуемых лазящими волокнами. Аксон клетки Пуркинье отходит от основания ее тела, покрывается миелиновой оболочкой, пронизывает зернистый слой и проникает в белое вещество, являясь единственным эфферентным путем его коры.

    Зернистый слой содержит близко расположенные тела зернистых нейронов, больших зведчатых нейронов (клеток Гольджи), а также клубочки мозжечка - особые округлые сложные синаптические контактные зоны между моховидными волокнами, дендритами зернистых нейронов и аксонами больших зведчатых нейронов.

    Зернистые нейроны - наиболее многочисленные нейроны коры мозжечка - мелкие клетки с короткими дендритами, имеющими вид «птичьей лапки», на которых в клубочках мозжечка розетки моховидных волокон образуют многочисленные синаптические контакты. Аксоны зернистых нейронов направляются в молекулярный слой, где Т-образно делятся на две ветви, идущие параллельно длине извилины (параллельные волокна) и образующие возбуждающие синапсы на дендритах клеток Пуркинье, корзинчатых и звездчатых нейронов, а также больших звездчатых нейронов.

    Большие звездчатые нейроны (клетки Гольджи) крупнее зернистых нейронов. Их аксоны в пределах клубочков мозжечка образуют тормозные синапсы на дендритах зернистых нейронов, а длинные дендриты поднимаются в молекулярный слой, где ветвятся и образуют связи с параллельными волокнами.

    Афферентные волокна коры мозжечка включают моховидные и лазящие волокна (см. рис. 130), которые проникают в кору мозжечка из спинного мозга, продолговатого мозга и моста.

    Моховидные волокна мозжечка заканчиваются расширениями (розетками) - клубочках мозжечка, образуя синаптические контакты с дендритами зернистых нейронов, на которых оканчиваются также и аксоны больших звездчатых нейронов. Клубочки мозжечка снаружи не полностью окружены плоскими отростками астроцитов.

    Лазящие волокна мозжечка проникают в кору из белого вещества, проходя через зернистый слой до слоя клеток Пуркинье и стелясь по телам и дендритам этих клеток, на которых они оканчиваются возбуждающими синапсами. Коллатеральные ветви лазящих волокон образуют синапсы на других нейронах всех типов.

    Эфферентные волокна коры мозжечка представлены аксонами клеток Пуркинье, которые в виде миелиновых волокон направляются в белое вещество и достигают глубоких ядер мозжечка и вестибулярного ядра, на нейронах которых они образуют тормозные синапсы (клетки Пуркинье являются тормозными нейронами).

    Кора полушарий большого мозга представляет собой высший и наиболее сложно организован-

    ный нервный центр, деятельность которого обеспечивает регуляцию разнообразных функций организма и сложные формы поведения. Кора образована слоем серого вещества, покрывающего белое вещество, на поверхности извилин и в глубине борозд. Серое вещество содержит нейроны, нервные волокна и клетки нейроглии всех видов. На основании различий плотности расположения и строения клеток (цитоархитектоники), хода волокон (миелоархитектоники) и функциональных особенностей различных участков коры в ней выделяют 52 нерезко разграниченные поля.

    Нейроны коры - мультиполярные, различных размеров и форм, включают более 60 видов, среди которых выделены два основных типа - пирамидные и непирамидные.

    Пирамидные клетки - специфический для коры полушарий тип нейронов; по разным оценкам, составляют 50-90 % всех нейронов коры. От апикального полюса их конусовидного (на срезах - треугольного) тела к поверхности коры отходит длинный (апикальный) покрытый шипиками дендрит (рис. 133), направляющийся в молекулярную пластинку коры, где он ветвится. От базальной и латеральных частей тела вглубь коры и в стороны от тела нейрона расходятся несколько более коротких боковых (латеральных) дендритов, которые, ветвясь, распространяются в пределах того же слоя, где находится тело клетки. От середины базальной поверхности тела отходит длинный и тонкий аксон, идущий в белое вещество и дающий коллатерали. Различают гигантские, большие, промежуточные и малые пирамидные клетки. Основная функция пирамидных клеток - обеспечение связей внутри коры (промежуточные и малые клетки) и образование эфферентных путей (гигантские и большие клетки).

    Непирамидные клетки располагаются практически во всех слоях коры, воспринимая поступающие афферентные сигналы, а их аксоны распространяются в пределах самой коры, передавая импульсы на пирамидные нейроны. Эти клетки весьма разнообразны и преимущественно являются разновидностями звездчатых клеток. Основная функция непирамидных клеток - интеграция нейронных цепей внутри коры.

    Цитоархитектоника коры полушарий большого мозга. Нейроны коры располагаются нерезко разграниченными слоями (пластинками), которые обозначаются римскими цифрами и нумеруются снаружи внутрь. На срезах, окрашенных гематоксилином-эозином, связи между нейронами не прослеживаются, поскольку выявляются лишь

    тела нейронов и начальные участки их отростков

    (рис. 131).

    I - молекулярная пластинка располагается под мягкой мозговой оболочкой; содержит сравнительно небольшое число мелких горизонтальных нейронов с длинными ветвящимися дендритами, отходящими в горизонтальной плоскости от веретеновидного тела. Их аксоны участвуют в образовании тангенциального сплетения волокон этого слоя. В молекулярном слое имеются многочисленные дендриты и аксоны клеток более глубоко расположенных слоев, образующих межнейронные связи.

    II - наружная зернистая пластинка образована многочисленными мелкими пирамидными и звездчатыми клетками, дендриты которых ветвятся и поднимаются в молекулярную пластинку, а аксоны либо уходят в белое вещество, либо образуют дуги и также направляются в молекулярную пластинку.

    III - наружная пирамидная пластинка характеризуется преобладанием пирамидных нейронов, размеры которых увеличиваются вглубь слоя от малых до больших. Апикальные дендриты пирамидных клеток направляются в молекулярную пластинку, а латеральные образуют синапсы с клетками данной пластинки. Аксоны этих клеток оканчиваются в пределах серого вещества или направляются в белое. Помимо пирамидных клеток, пластинка содержит разнообразные непирамидные нейроны. Пластинка выполняет преимущественно ассоциативные функции, связывая клетки как в пределах данного полушария, так и с противоположным полушарием.

    IV - внутренняя зернистая пластинка содержит малые пирамидные и звездчатые клетки. В этой пластинке оканчивается основная часть таламических афферентных волокон. Аксоны клеток этой пластинки образуют связи с клетками выше- и нижележащих пластинок коры.

    V - внутренняя пирамидная пластинка образована большими пирамидными нейронами, а в области моторной коры (прецентральной извилины) - гигантскими пирамидными нейронами (клетки Беца). Апикальные дендриты пирамидных нейронов достигают молекулярной пластинки, латеральные дендриты распространяются в пределах той же пластинки. Аксоны гигантских и больших пирамидных нейронов проецируются на ядра головного и спинного мозга, наиболее длинные из них в составе пирамидных путей достигают каудальных сегментов спинного мозга.

    VI - мультиформная пластинка образована разнообразными по форме нейронами, причем ее

    наружные участки содержат более крупные клетки, а внутренние - более мелкие и редко расположенные. Аксоны этих нейронов уходят в белое вещество в составе эфферентных путей, а дендриты проникают до молекулярной пластики.

    Миелоархитектоника коры полушарий большого мозга. Нервные волокна коры полушарий большого мозга включают три группы: 1) афферентные; 2) ассоциативные и комиссуральные; 3) эфферентные.

    Афферентные волокна приходят в кору из ниже расположенных отделов головного мозга в виде пучков в составе вертикальных полосок - радиальных лучей (см. рис. 132).

    Ассоциативные и комиссуральные волокна - внутрикорковые волокна, которые соединяют между собой различные области коры внутри одного или в разных полушариях соответственно. Эти волокна образуют пучки (полоски), которые проходят параллельно поверхности коры в пластинке I (тангенциальная пластинка), в пластинке II (дисфиброзная пластинка, или полоска Бехтерева), в пластинке IV (полоска наружной зернистой пластинки, или наружная полоска Байярже) и в пластинке V (полоска внутренней зернистой пластинки, или внутренняя полоска Байярже) - см. рис. 132. Последние две системы являются сплетениями, образованными конечными отделами афферентных волокон.

    Эфферентные волокна связывают кору с подкорковыми образованиями. Эти волокна идут в нисходящем направлении в составе радиальных лучей.

    Типы строения коры полушарий большого мозга.

    В отдельных участках коры, связанных с выполнением разных функций, преобладает развитие тех или иных ее слоев, на основании чего различают агранулярный и гранулярный типы коры.

    Агранулярный тип коры характерен для ее моторных центров и отличается наибольшим развитием пластинок III, V и VI коры при слабом развитии пластинок II и IV (зернистых). Такие участки коры служат источниками нисходящих проводящих путей.

    Гранулярный тип коры характерен для областей расположения чувствительных корковых центров. Он отличается слабым развитием слоев, содержащих пирамидные клетки, при значительной выраженности зернистых (II и IV) пластинок.

    Белое вещество головного мозга представлено пучками нервных волокон, которые поднимаются к серому веществу коры из ствола мозга и спускаются к стволу мозга от корковых центров серого вещества.

    ОРГАНЫ НЕРВНОЙ СИСТЕМЫ

    Органы периферической нервной системы

    Рис. 114. Нерв (нервный ствол). Поперечный срез

    Окраска: осмирование

    1 - нервные волокна; 2 - эндоневрий; 3 - периневрий; 4 - эпиневрий: 4.1 - жировая ткань, 4.2 - кровеносный сосуд

    Рис. 115. Участок нерва (нервного ствола)

    Окраска: осмирование

    1- миелиновое волокно: 1.1 - отросток нейрона, 1.2 - миелиновая оболочка;

    2- безмиелиновое волокно; 3 - эндоневрий; 4 - периневрий

    Рис. 116. Нервный ствол (нерв). Поперечный срез

    Окраска: гематоксилин-эозин

    1 - нервные волокна; 2 - эндоневрий: 2.1 - кровеносный сосуд; 3 - периневрий; 4 - эпиневрий: 4.1 - жировые клетки, 4.2 - кровеносные сосуды

    Рис. 117. Участок нервного ствола (нерва)

    Окраска: гематоксилин-эозин

    1 - миелиновое волокно: 1.1 - отросток нейрона, 1.2 - миелиновая оболочка, 1.3 - ядро нейролеммоцита; 2 - безмиелиновое волокно; 3 - эндоневрий: 3.1 - кровеносный сосуд; 4 - периневрий; 5 - эпиневрий

    Рис. 118. Участок нервного ствола (нерва)

    1 - миелиновое волокно: 1.1 - отросток нейрона, 1.2 - миелиновая оболочка; 2 - безмиелиновое волокно; 3 - эндоневрий: 3.1 - кровеносный сосуд; 4 - периневрий

    Рис. 119. Соматическая рефлекторная дуга

    1.Рецепторное звено образовано афферентными (чувствительными) псевдоуниполярными нейронами, тела которых (1.1) располагаются в чувствительных узлах спинномозгового нерва (1.2). Периферические отростки (1.3) этих клеток образуют чувствительные нервные окончания (1.4) в коже или скелетной мышце. Центральные отростки (1.5) вступают в спинной мозг в составе задних корешков (1.6) и направляются в задние рога серого вещества, образуя синапсы на телах и дендритах вставочных нейронов (трехнейронные рефлекторные дуги, А), или проходят в передние рога к мотонейронам (двухнейронные рефлекторные дуги, Б).

    2.Ассоциативное звено представлено (2.1), дендриты и тела которых лежат в задних рогах. Их аксоны (2.2) направляются в передние рога, передавая нервные импульсы на тела и дендриты эффекторных нейронов.

    3.Эфферентное звено образовано мультиполярными мотонейронами (3.1). Тела и дендриты этих нейронов лежат в передних рогах, формируя двигательные ядра. Аксоны (3.2) мотонейронов выходят из спинного мозга в составе передних корешков (3.3) и далее в составе смешанного нерва (4) направляются к скелетной мышце, где веточки аксона образуют нейро-мышечные синапсы (3.4)

    Рис. 120. Автономная (вегетативная) рефлекторная дуга

    1.Рецепторное звено образовано афферентными (чувствительными) псевдоуниполярными нейрона ми, тела которых (1.1) лежат в чувствительных узлах спинномозгового нерва (1.2). Периферические отростки (1.3) этих клеток образуют чувствительные нервные окончания (1.4) в тканях внутренних органов. Центральные отростки (1.5) вступают в спинной мозг в составе зад них корешков (1.6) и направляются в боковые рога серого вещества, образуя синапсы на телах и дендритах вставочных нейронов.

    2.Ассоциативное звено представлено мультиполярными вставочными нейронами (2.1), дендриты и тела которых расположены в боковых рогах спинного мозга. Аксоны этих нейронов являются преганглионарными волокнами (2.2). Они покидают спинной мозг в составе передних корешков (2.3), направляясь в один из вегетативных ганглиев, где и заканчиваются на телах и дендритах их нейронов.

    3.Эфферентное звено образовано мультиполярными или биполярными нейронами, тела которых (3.1) лежат в автономных ганглиях (3.2). Аксоны этих клеток являются постганглионарными волокнами (3.3). В составе нервных стволов и их ветвей они направляются к клеткам рабочих органов - гладким мышцам, железам, сердцу, образуя на них окончания (3.4). В вегетативных ганглиях помимо «длинноаксонных» эфферентных нейронов - клеток I типа Догеля (ДI), имеются «равноотростчатые» афферентные нейроны - клетки II типа Догеля (ДII), которые входят в качестве рецепторного звена в состав местных рефлекторных дуг, и ассоциативные клетки III типа Догеля (ДIII) - мелкие вставочные нейроны

    Рис. 121. Чувствительный ганглий спинномозгового нерва

    Окраска: гематоксилин-эозин

    1 - задний корешок; 2 - чувствительный ганглий спинномозгового нерва: 2.1 - соединительнотканная капсула, 2.2 - тела псевдоуниполярных чувствительных нейронов, 2.3 - нервные волокна; 3 - передний корешок; 4 - спинномозговой нерв

    Рис. 122. Псевдоуниполярный нейрон чувствительного ганглия спинномозгового нерва и его тканевое микроокружение

    Окраска: гематоксилин-эозин

    1 - тело псевдоуниполярного чувствительного нейрона: 1.1 - ядро, 1.2 - цитоплазма; 2 - сателлитные глиальные клетки; 3 - соединительнотканная капсула вокруг тела нейрона

    Рис. 123. Автономный (вегетативный) ганглий из солнечного сплетения

    1 - преганглионарные нервные волокна; 2 - автономный ганглий: 2.1 - соединительнотканная капсула, 2.2 - тела мультиполярных вегетативных нейронов, 2.3 - нервные волокна, 2.4 - кровеносные сосуды; 3 - постганглионарные волокна

    Рис. 124. Мультиполярный нейрон автономного ганглия и его тканевое микроокружение

    Окраска: железный гематоксилин

    1 - тело мультиполярного нейрона: 1.1 - ядро, 1.2 - цитоплазма; 2 - начало отростков; 3 - глиоциты; 4 - соединительнотканная оболочка

    Органы центральной нервной системы

    Рис. 125. Спинной мозг (поперечный срез)

    Окраска: азотнокислое серебро

    1 - серое вещество: 1.1 - передний (вентральный) рог, 1.2 - задний (дорсальный) рог, 1.3 - боковой (латеральный) рог; 2 - передняя и задняя серые спайки: 2.1 - центральный канал; 3 - передняя срединная щель; 4 - задняя срединная борозда; 5 - белое вещество (тракты): 5.1 - дорсальный канатик, 5.2 - латеральный канатик, 5.3 - вентральный канатик; 6 - мягкая оболочка спинного мозга

    Рис. 126. Спинной мозг.

    Участок серого вещества (передние рога)

    Окраска: гематоксилин-эозин

    1- тела мультиполярных двигательных нейронов;

    2- глиоциты; 3 - нейропиль; 4 - кровеносные сосуды

    Рис. 127. Спинной мозг. Участок белого вещества

    Окраска: гематоксилин-эозин

    1 - миелиновые нервные волокна; 2 - ядра олигодендроцитов; 3 - астроциты; 4 - кровеносный сосуд

    Рис. 128. Спинной мозг. Центральный канал

    Окраска: гематоксилин-эозин

    1 - эпендимоциты: 1.1 - реснички; 2 - кровеносный сосуд

    Рис. 129. Мозжечок. Кора

    (срез, перпендикулярный ходу извилин)

    Окраска: гематоксилин-эозин

    1 - мягкая оболочка головного мозга; 2 - серое вещество (кора): 2.1 - молекулярный слой, 2.2 - слой клеток Пуркинье (грушевидных нейронов), 2.3 - зернистый слой; 3 - белое вещество

    Рис. 130. Мозжечок. Участок коры

    Окраска: азотнокислое серебро

    1 - молекулярнай слой: 1.1 - дендриты клеток Пуркинье, 1.2 - афферентные (лазящие) волокна, 1.3 - нейроны молекулярного слоя; 2 - слой клеток Пуркинье (грушевидных нейронов): 2.1 - тела грушевидных нейронов (клеток Пуркинье), 2.2 - «корзинки», образованные коллатералями аксонов корзинчатых нейронов; 3 - зернистый слой: 3.1 - тела зернистых нейронов, 3.2 - аксоны клеток Пуркинье; 4 - белое вещество

    Рис. 131. Полушарие большого мозга. Кора. Цитоархитектоника

    Окраска: гематоксилин-эозин

    1 - мягкая оболочка головного мозга; 2 - серое вещество: пластинки (слои) коры обозначены римскими цифрами: I - молекулярная пластинка, II - наружная зернистая пластинка, III - наружная пирамидная пластинка, IV - внутренняя зернистая пластинка, V - внутренняя пирамидная пластинка, VI - мультиформная пластинка; 3 - белое вещество

    Рис. 132. Полушарие большого мозга. Кора.

    Миелоархитектоника

    (схема)

    1 - тангенциальная пластинка; 2 - дисфиброзная пластинка (полоска Бехтерева); 3 - радиальные лучи; 4 - полоска наружной зернистой пластинки (наружная полоска Байярже); 5 - полоска внутренней зернистой пластинки (внутренняя полоска Байярже)

    Рис. 133. Большой пирамидный нейрон полушария большого мозга

    Окраска: азотнокислое серебро

    1- большой пирамидный нейрон: 1.1 - тело нейрона (перикарион), 1.2 - дендриты, 1.3 - аксон;

    2- глиоциты; 3 - нейропиль